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Abstract. The atomic and electronic structure of the (1 22)Z = 9 grain boundary in cubic S i c  
has been calculated for the first time using the self-consistent tight-binding (SCTB) method. 
An atomic model consistingof a zig-zag arrangement of five-membered and seven-membered 
rings similar to that in the same boundary in Si or G e  has been constructed from a high- 
resolution electron microscope image, although S i 4  and C-C wrong bonds are repeated 
alternately at the interface in this model. We have also performed calculations of the same 
boundary in Si using the SCTB method for comparison, and have obtained results similar to 
those previously obtained by other theoretical schemes. The calculated boundary energy in 
S i c  has shown that the present atomic model can exist stably compared with the two surfaces, 
and the calculated boundary electronic structure in S i c  has no deep states in the gap as well 
as that in Si. These results indicate the possibility that stable boundary structures can be 
constructed by arranging structural units in S i c  as well as in covalent semiconductors. 
However, it has been found that the presence of the wrong bonds greatly influences the 
boundary energy and the boundary electronic structure. The increase in the electrostatic 
energy caused by the wrong bonds is a large part of the present boundary energy in SIC, 
differently from that in Si, and i t  has been shown that the wrong bonds introduce the wrong- 
bond localised states at the band edges and within the valence band. 

1. Introduction 

Various properties of ceramics such as sintering, mechanical and electronic properties 
depend on grain boundaries. It is of much importance to understand the structures and 
properties of grain boundaries in ceramics from a microscopic viewpoint. Nowadays, it 
is possible to obtain experimentally valuable information about atomic structures of 
grain boundaries in ceramics by virtue of recent developments in the technique of 
electron microscopy [1-4]. On the other hand, recent developments and improvements 
in theoretical schemes and high-performance computers have made possible theoretical 
approaches to atomic structures and properties of grain boundaries in ceramics. 
However, these theoretical approaches have been carried out only for grain boundaries 
in ionic ceramics such as MgO and NiO [5-71. It is necessary to deal with grain boundaries 
in covalent ceramics such as S i c  and Si,N, theoretically. In these systems, it is essential 
to calculate electronic structure at the interface. 

0953-8984/90/387809 + 15 $03 .500  1990 IOP Publishing Ltd 7809 
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On the other hand, significant advances have been made in the understanding of 
atomic and electronic structures of grain boundaries in covalent semiconductors such as 
Si and Ge. From various observations [8-!0] and theoretical calculations [ll-151, it has 
been shown that frequently observed coincident site lattice (CSL) boundaries such as the 
(1 1 l} C = 3, the (21 1) C = 3, the (122) X = 9 and the (255) C = 27 boundaries are 
constructed by arranging structural units such as five-membered rings and seven-mem- 
bered rings and are electrically non-active because of dangling-bond reconstruction at 
interfaces. It is interesting to examine whether these features of grain boundaries in 
covalent semiconductors are applicable to grain boundaries in covalent ceramics or not. 

In thispaper, we haveconstructedanatomicmodelofthe{122)2 = 9grainboundary 
(second-order twin boundary) in P-SiC and calculated theoretically the stable atomic 
configuration, boundary energy and electronic structure for the first time. The results 
have been compared with those of the same type of boundary in Si. 

2. Atomic model 

Hiraga has obtained a high-resolution electron microscope (HREM) image of the {122) 
2 = 9 grain boundary in chemical vapour-deposited (CVD) P-Sic [l] .  He has found that 
there exist coherent matching and periodic structure at the interface. By comparing this 
image with a HREM image of the same type of boundary in Ge [9], we have found that 
there is a great similarity between the two images. It has already been shown that the 
(122) X = 9 grain boundary in Si or Ge  has a reconstructed structure where a zig-zag 
arrangement of two sets of five-membered and seven-membered rings constitutes one 
period along the (4 11) direction in projection onto the (0 1l)plane [8,9,11,12]. We call 
one set of five-membered and seven-membered rings a 5-7 unit [16]. A similar atomic 
model consisting of a zig-zag arrangement of 5-7 units can also be constructed for the 
(1 22) 2 = 9 boundary in @-Sic. Recently, Hagkge et a1 [17] have used image simulation 
and found that this type of model can explain the HREM image [l]. 

However, odd-membered rings in S i c  introduce wrong bonds between like atoms, 
and it is possible to construct three types of model of this boundary with respect to the 
kinds of wrong bond. One contains only C-C wrong bonds, another contains only Si-Si 
wrong bonds and the other contains both C-C and Si-Si wrong bonds at the interface. 
The former two models have glide-plane symmetry with respect to the interface as well 
as the model in Si or Ge, and are expressed as p2;ma'  [NI. However, the last model 
does not have glide-plane symmetry but only mirror symmetry with respect to the (0 1 l} 
plane and is expressed as pm. This is because one of the two grains constituting the 
interface is inverted in this model as compared with the former two models. In this 
model, Si-Si wrong bonds and C-C wrong bonds are repeated alternately at the interface 
and the two sets of 5-7 units constituting one period along the (4 11) direction are not 
similar to each other. It seems that the HREM image of this boundary in S i c  [l] does not 
have glide-plane symmetry strictly by a small rigid-body translation along the (4 1 1) 
direction, which supports the presence of the last model, although further precise 
observations are needed in order to settle this problem completely. 

In this paper, as the first step, we treat the last model. We have calculated the 
boundary energy, the stable atomic configuration and the electronic structure of this 
model quantum-mechanically . 
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3. Method of calculation 

A b  initio calculations are formidable tasks in the present case because of the large 
number of non-equivalent atoms. The tight-binding electronic theories [ 19,201 have 
been shown to be quite useful for calculations of grain boundaries in covalent semi- 
conductors [ll-151. However, for calculations of lattice defects in solids with both 
properties of covalency and ionicity such as S ic ,  it is necessary to incorporate the effects 
of self-consistent charge redistribution and electrostatic interactions, which cannot be 
included in the usual tight-binding theories. Thus we have used the self-consistent tight- 
binding (SCTB) method [21-231. The SCTB method can deal with covalency and ionicity 
on an equal footing, and is capable of calculating electronic structure, total energy and 
atomic forces sufficiently rapidly for the lattice relaxation of extended defects as well as 
other tight-binding methods. Results can be easily analysed and can give a simple 
chemical picture as compared with the ab initio methods. 

The precise description of the present method has been given in our preceding paper 
[23]. The essence of this method can be described as follows. The orthogonalised basis 
functions are constructed as 

/ia, k) = N-’I2 2 exp[ik ( t ,  + R ) ] q l f f ( r - t l  - R )  (1) 
R 

where q la ( r  - t, - R )  is the a th  atomic orbital centred on an atom i located at t, + R ,  R 
is a lattice vector representing each unit cell of the periodic system and N is the number 
of unit cells in the system. The eigenfunction of the tight-binding Hamiltonian with 
wavevector k and band index n is expressed as 

In, k) = 2 Cy: lia, k). ( 2 )  
la 

The effects of the charge transfer between atoms and the overlap between local 
atomic orbitals are included in the on-site elements of the Hamiltonian as 

E,,  = + - 2,) + PI +fie. (3) 
The first term is the orbital energy of the neutral free atom i. The second term expresses 
the change in the intra-atomic Coulomb potential. U, is an average of the intra-atomic 
Coulomb integrals of the valence electrons of the atom i. Z,  and Q, are the charge of the 
ion core and the self-consistent occupancy of the atom i. Q, is given by 

occ 

lY a n . k  

The third term in equation (3) is the inter-atomic electrostatic potential for an electron 
located on the atom i and is given by 

; t i  

where 

@o = V ( R )  
R+O 

and 

00 = V(t ,  + R - 
R 

Here j indicates the atoms other than i in the unit cell. V(ri - ri) is an effective inter- 
atomic electrostatic function, which expresses a simple Coulomb potential for large 
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distances and includes the effects of charge overlap for short distances. The fourth term 
in equation (3) is the non-orthogonality correction and is given by the overlap matrix 
elements between atomic orbitals as 

fin = - E HmjPSlfiia. (6) 
jP  

By solving the above one-electron Schrodinger equation self-consistently , the band- 
structure energy Ebs is given as a sum of the eigenenergies of occupied states. The total 
energy E,,, is given by subtracting the doubly counted electron-electron electrostatic 
energy and adding the ion-ion electrostatic energy. The binding energy EB per unit cell, 
which is the difference between the total energy of the system and that of the free atoms, 
E:,,, , can be written as a sum of the following four terms: 

EB = E p r o  + E ~ a d  + Eo, + Ecov (7a) 

where 

in 

and 

occ 

where Hnp(t, ,  t, + R )  is the inter-atomic Hamiltonian element between rpla(r - t i )  and 
rpIp(r - t, - R ) .  Epro contains the promotion energy, the energy gain by electron transfer 
between different kinds of atoms and the change in the intra-atomic electrostatic energy 
between electrons. EMad is the inter-atomic electrostatic energy (Madelung energy), 
which is a sum of interactions between effective charges of respective atoms, Q, - Z,. 
E,, is the overlap interaction energy, which expresses the increase in the kinetic energy 
of the electrons upon compression. This term is often given by a simple sum of inter- 
atomic potentials in usual tight-binding theories [19,20]. E,,, is the covalent energy and 
contains only the contribution from the inter-atomic covalent bonding. 

Atomic forces are also given very easily [22,23] via the Hellmann-Feynman theorem 
as well as other tight-binding theories [19,20], and lattice relaxation can be performed 
easily. 

We have used the following parameters and functional forms in the SCTB method 
determined so as to reproduce the basic properties of p-Sic, Si and C adequately in our 
preceding paper [23]. One s and three p valence orbitals per atom are included in the 
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Table 1. Parameters used in the calculations [21]t. 

Si C 

EP (ev)  -14.68 - 19.19 
E\ ( ev )  -8.08 -11.79 
U (ev)  7.64 11.76 

v,,, = - 1.38 7,,p,o = 1.68 ~ s ~ p , o  = 1.92 
VPPO = 2.20 VPP" = -0.55 

t In the universal tight-binding parameters, a and c denote anion and cation. For elemental 
solids or wrong bonds, the average is used. 

basis set. The two-centre integrals of the Hamiltonian are expressed by assuming the r -2  
dependence on the inter-atomic distance r as 

H , ~ ~ ~  = qotmk2/mr2.  (8) 
'The universal tight-binding parameters qllrm [21,24] are listed in table 1. The energy 
levels of free atoms and the intra-atomic Coulomb repulsions in equation (3) are also 
listed. For the effective inter-atomic electrostatic function, we have used the following 
form [21]: 

The two-centre overlap integrals used in equation (6) have a p/r4 + q form as 

s~~~~ = q n , m [ 2 / ( ~ ;  + ~ ; m f i * / m ) ( p / r 4  + 4) .  (10) 
This form has been found so as to reproduce the bond lengths, binding energies and bulk 
moduli of all Si, P-SiC and C adequately [23]. This form is more favourable than a l/r3 
form [21] or a l /r2 form for a system containing wrong bonds because this form can 
reproduce the thermodynamic stability condition of S ic  for Si and C, although this 
form is improper for largely distorted systems as shown in our preceding paper [23]. 
Parameters p and q have been determined so as to reproduce the experimental bond 
length and the experimental binding energy for p-Sic, Si and C, respectively, and are 
listed in table 2. For Si-Si wrong bonds and C-C wrong bonds in Sic ,  we have used the 
values for Si and C,  respectively. 

All the calculations of the present grain boundary using the above SCTB method are 
carried out with use of the supercell technique. In this technique, in addition to the 
two-dimensional periodicity parallel to the boundary plane, periodicity normal to the 
boundary plane is imposed by stacking symmetric boundary planes alternately. Thus 

Table 2. Parameters for the overlap integrals [23]. 

Sic  Si C 

0.4244 0.6883 0.2988 
0.0635 0.0214 0.1586 

P (+*) 
4 (0 
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Table 3. Calculated energy values of the {122} Z = 9 grain boundaries in p-Sic  and Si. 
Energy increases per supercell against the values in the perfect crystals are shown. Each 
supercell contains two symmetric interfaces in the present calculations. Eph is the interfacial 
energy per unit area for one interface. 

Si p-Sic  

80-atom cell 144-atom cell 80-atom cell 144-atom cell 

(eV/cell) 0.283 0.274 - 1.785 - 1.785 
AE,,, (eV/cell) -0.008 -0.008 4.022 4.021 
AE,, (eV/cell) 2.410 2.345 7.756 7.645 

AEB (eV/cell) 1.856 1.849 5.079 5.072 
EBh ( J  m-?) 0.336 0.335 1.427 1.425 

AE,,, (eV/cell) -0.829 -0.762 -4.915 -4.808 

it is possible to utilise a conventional method of band-structure calculation with respect 
to a large unit cell containing two symmetric interfaces. For the present model of the 
(1 22) C = 9 boundary in p-Sic,  the supercell structure is orthorhombic and belongs to 
the point group C2". 

It is desirable that the distance between two neighbouring boundary planes is suf- 
ficiently large. In the present calculations, both 80-atom and 144-atom supercells have 
been used in order to examine the dependence on the size of the cell. The distances 
between the two neighbouring boundary planes in the two supercells of S i c  are about 
15 A and 26 A respectively. The optimum rigid-body translation between the two 
grains was determined by iterating lattice relaxation of the 80-atom cell for various 
translations. The same translation was used for the lattice relaxation of the 144-atom 
cell. 

The number of special k-points and the ranges of lattice sums in real and reciprocal 
space in the Ewald method for calculation of equation (5) were determined by supercell 
calculations of the perfect crystal with the same size and the same periodicity as the 
supercells of the boundary. In each step of lattice relaxation, the self-consistent iteration 
was terminated if the differences between input and output occupancies of respective 
atoms are all kept within a given tolerance 

In addition to the calculations of the boundary in P-SiC, we have also performed 
calculations for a similar atomic model of the same type of boundary in Si using the same 
theoretical method for comparison. This structure in Si has already been examined by 
other theoretical schemes [ 11, 121. 

electrons). 

4. Grain boundary energy and atomic structure 

Table 3 shows the calculated energy values. All the values are the differences from those 
in the perfect crystals. Figures 1 and 2 show the calculated stable atomic configurations 
and the self-consistent effective charges of respective atoms, -(Qi - Z,), in the 144- 
atom cells of Si and @-Sic. As shown in table 3, the dependence on the size of the 
supercell is not very large and the values of the 144-atom cells can be regarded as 
converged ones. This is true of the atomic configurations and effective charges. 
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i 2 1  
i2i L iii L. i i i  

100 3 100 3 
Figure 1. Relaxed atomic structure of the {122} 
Z = 9 grain boundary in Si. Atomic positions are 
projected along the [ O l l ]  axis. The numbers 
inside the circles indicate the effective charges of 
respective atoms, - (Q ,  - Z ) ) ,  expressed in units 
of e. 

Figure 2. Relaxed atomic structure of the {122} 
Z: = 9 grain boundary in /3-Sic. Atomic positions 
are projected along the [0 1 11 axis. The circles and 
the double circles indicate C atoms and Si atoms, 
respectively. The numbers inside the circles indi- 
cate the effective charges of respective atoms, -(e, - Z , ) ,  expressed in units of e. The effective 
charges in the perfect crystal are +0.45e. 

The calculated boundary energy per unit area of the (122) I: = 9 boundary in Si is 
comparable with the values of 0.32 and 0.29 J m-* calculated using the semi-empirical 
tight-binding (SETB) method [ll] and the density-functional theory [12]. This means the 
present SCTB method is reliable. For the boundary energy of S ic ,  we can conclude that 
the present modelofthe{l22}Z = 9 boundaryinp-SiCpossiblyexistsstably ascompared 
with the estimated values of the surface energies of S i c  [25]. 

The optimum rigid-body translation between the two grains of Si in figure 1 is ti = 
O.0O5a0[i22], which is a slight dilatation along the [ i22]  direction. This component is 
defined compared with a structure where the distance between neighbouring (722) 
atomic planes at the interface is set to that in the perfect crystal. On the other hand, in 
the case of S i c  in figure 2, the structure of the interface does not have glide-plane 
symmetry and the optimum rigid-body translation has two components: t ,  = 
0.005ao[?22] and tl: = O.Olao[~ i l ] .  These components are also defined compared with 
a structure similar to that in Si with glide-plane symmetry. The latter component is not 
contained in the periodic vectors of the supercell geometry because these types of 
component of the two symmetric interfaces in one supercell offset each other. Thus this 
component is determined from the relaxed atomic configuration itself. As shown in 
figure 2, it can be said that the translation along the [ai 11 direction is caused mainly by 
the difference between the bond lengths of a C-C wrong bond and a Si-Si wrong bond 
at the interface. 

In the stable atomic configuration of the grain boundary in Si shown in figure 1, the 
bond-length deviations from that in the perfect crystal range from -1.9% to 1.5% and 
the bond-angle deviations range from - 16.0" to 19.9'. These values are comparable with 
the calculated values of the same boundary and other CSL boundaries in Si [ll-151. 
Large deviations are localised around the 5-7 units at the interface. The static charge 
fluctuations caused by the structural disorder are also localised in these structural units 
at the interface, and range from -0.02e to +0.02e. 'These values are more reliable than 
those as large as -0.14e in the calculation of the same boundary using the SETB method 
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without any form of self-consistency [ll]. Correlation exists between the charge fluc- 
tuations and the structural disorder, although the precise relation between the respective 
charges of atoms and the local structural disorder is not clear. Excess electronic charges 
of 0.02e occur at atoms surrounded by bond-length shortening of 1.9% and 1.2%, 
although deficiencies of 0.02e also occur at atoms surrounded by bond-length shortening 
of 1.7% and 1.1%. 

In the stable atomic configuration of the present boundary in S i c  shown in figure 2, 
the bond-angle deviations range from -23.1' to 24.1". The bond-length deviations of 
normal Si-C bonds range from -2.5% to 2.2%. Large deviations are also localised 
around the 5-7 units at the interface. The length of the Si-Si wrong bond is shorter by 
4.3% than that in bulk Si and the length of the C-C wrong bond is longer by 3.8% than 
that in bulk diamond. As compared with the bond length in bulk Sic ,  the former is 
longer by 19.6% and the latter is shorter by 15.1%. Owing to the presence of these 
wrong bonds, the small rigid-body translation along the [ T i  11 direction is introduced as 
mentioned above, and the deviations of bond angles and Si-C bond lengths are relatively 
large as compared with those in the boundary in Si. However, it can be said that the 
covalent bonds are well reconstructed at the interface in the present boundary of S i c  as 
well as the case of Si. 

In figure 2, large static charge fluctuations exist especially around the wrong bonds 
and are localised within several atomic layers at the interface. This indicates the import- 
ance of self-consistency. As compared with the perfect crystal, the largest deviation of 
electron occupancies of respective C atoms is a decrease of 0.14e at the C-C wrong bond 
and that of respective Si atoms is an increase of 0.20e at the Si-Si wrong bond. 

Using the atomic structures and charge distributions shown in figures 1 and 2, the 
respective energy values in table 3 can be analysed. First, we analyse the energy values 
of Si. Epro in Si includes the promotion energy and the change in the intra-atomic 
electrostatic energy between electrons as shown in equation (7b). The main reason for 
the increase of Epro shown in table 3 is the increase of the s-p mixing around the interface, 
which is the ratio of p-orbital occupancy to s-orbital occupancy in the respective atoms 
[20]. The slight increase of total p-orbital occupancy in the present boundary structure 
causes the present increase of Epro. The changes in the intra-atomic electrostatic energy 
lUiQ! of the respective atoms are small and counterbalanced to each other. 

We have found fluctuations of the s-p mixing from -0.014 to +0.024 around the 
interface, and found a correlation between the s-p mixing and the bond-length 
deviations, although the correlation between the s-p mixing and the bond-angle devi- 
ations is not clear. As found in the case of the perfect crystals [20,23], we have found 
that the bond-length shortening causes the increase of the s-p mixing. For example, the 
atom with effective charge -0.02e has the maximum s-p mixing and is surrounded by 
the bond-length shortening of 1.9% and 1.2%. Inversely, the two atoms constituting the 
most lengthened bond have the smallest and second smallest values of s-p mixing. 
Around the interface of the present boundary structure in Si, there are many shortened 
bonds as compared with lengthened bonds, which causes the present increase of Epr:. 
This is consistent with the negative value of AE,,, and the positive value of AEov in 
table 3. 

AEMad in Si is only a negligible contribution to the boundary energy as shown in table 
3. This explains the fact that the values of grain boundary energy in Si calculated without 
any form of self-consistency [11, 151 are not so different from those of the present and 
other self-consistent calculations [12-141. It seems that, at least in the structure where 
all the atoms are fourfold-coordinated, the self-consistency has a negligible effect in Si, 
as pointed out in [14]. 
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The main contribution to the boundary energy in Si is the change in E,, + E,,,, which 
is 1.583 eV per supercell. This is caused by structural disorder such as bond-length and 
bond-angle deviations. Of course, it is possible that the signs of AE,, and AE,,, are 
inverted in defects such as those with many lengthened bonds, differently from the 
present boundary. The present method of calculation of E,, is much different from the 
SETB method [ 113. However, the relatively small deviations of bond lengths in the present 
boundary result in a small difference between the calculated values of total boundary 
energy [ 111. 

Then, we analyse the energy values of S i c  in table 3. AE,,, is negative and relatively 
large, differently from that in Si. By analysing the charge fluctuations, it can be said that 
the reduction of the total intra-atomic electrostatic energy is most responsible for the 
present value of AEpr,. The decrease of Q, at the C-C wrong bonds much reduces the 
total sum of +U, QZ in Epro in spite of the increase of Q, at the Si-Si wrong bonds because 
U, is larger in C than in Si. This large reduction is counterbalanced by the following two 
effects and results in the present value of AEpro. First, the decrease of the total electron 
occupancy in C atoms and the increase of that in Si atoms caused by the wrong bonds 
contribute to the increase of Epro through the decrease of the energy gain by electron 
transfer from Si to C as compared with the perfect crystal. Secondly, slight increases of 
the s-p mixing occur in C atoms, especially at the wrong bonds. This contributes to the 
increase of Epro. 

There are also the fluctuations of the s-p mixing of respective atoms around the 
interface of the present boundary in S ic .  The s-p mixing of C atoms at the C-C wrong 
bonds is increased as compared with that in the perfect crystal because of the shortened 
C-C bond length compared with the ordinary Si-C bond length. Inversely, the s-p 
mixing of the Si atoms at the Si-Si wrong bond is decreased because of the lengthened 
bond length. There is also a correlation between the s-p mixing and the lengths of the 
other Si-C bonds. 

AEMdd in the present boundary in S i c  is relatively large because of the presence of 
the wrong bonds compared with that in Si. We have found that there are large deviations 
of the inter-atomic electrostatic potential (Madelung potential) for an electron, PI of 
equation ( 5 ) ,  around the interface, especially at the wrong bonds, as well as charge 
fluctuations. In bulk S ic ,  PI at C atoms is negative and PI at Si atoms is positive. The 
absolute values of PI at the two C atoms of the C-C wrong bond are decreased by about 
1.1 eV, and then the contributions to hEMad, which is Ai(Q, - Z,)P,, are +0.396 eV and 
+0.373 eV. At  the two Si atoms of the Si-Si wrong bond, the absolute values of PI are 
decreased by about 1.2 eV and about 1.4 eV, and then the contributions to AEMad are 
+0.423 eV and +OS00 eV. These contributions of the atoms at the wrong bonds form 

The deviations of PI larger than k O . 1  eV are concentrated in the region within about 
4 A from the interface. It is interesting that the directions of the deviations of PI in the 
two crystals on both sides of the interface are opposite to each other except for the 
boundary core region, in accordance with the absence of glide-plane symmetry in the 
present interface structure. In the upper crystal in figure 2, PI are all shifted in the 
negative direction, and in the lower crystal in figure 2, PI are all shifted in the positive 
direction. These small deviations of P, of respective atoms in the two crystals decrease 
slowly with increasing distances from the interface. 

It should be noted that AEpro + AEMad is a large part of the boundary energy in SIC, 
differently from the case of Si. This is caused by the presence of the wrong bonds and 
is determined mainly by the intra-atomic and the inter-atomic electrostatic interactions. 

84% Of AEMad. 
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2 w 
w 

- 4  

-8 

- 1 2  

0 1  2 3  

~ Figure 3. The energy band structure of the perfect 
~ i crystal of Si. Points 0, 1, 2 and 3 in the Brillouin 
j j zone are (0,0,  0), (n/R,, 0,0) ,  ( n / R , ,  .z/R2, 0) 
I ~ and (0, n/R,,  0). respectively, where 

R I  = ( 3 a / 2 ) a o  and R 2  = ( d / 2 ) u , ) .  In this 
i 1 notation, the x axis is along the [ T i l ]  direction 
' ' and they  axis is along the [ O l  11 direction. These 
0 are common in figures 4,5 and 6. 

This means the importance of self-consistency in treating lattice defects in solids with 
both covalent and ionic characters within the tight-binding theories, and it is important 
to treat both intra-atomic and inter-atomic electrostatic interactions self-consistently . 

AE,, + AE,,, in S i c  is 2.837 eV per supercell. This value is reasonable compared 
with the value of 1.583 eV in Si, considering the relation between the elastic properties 
of S i c  and Si. It seems that the formation of wrong bonds does not affect AE,, + AE,,, 
so much compared with AE,,, + hEMad. In the formation of two Si-Si bonds and two 
C-C bonds from four Si-C bonds as well as the present supercell, the change in E,, + E,,, 
is estimated to be -0.34 eV from the values of the perfect crystals if all the bond lengths 
are the same as those in the perfect crystals [23]. (This indicates that EMad is essential to 
stabilise S i c  with respect to Si and C.) Therefore, the present value of AE,, + AE,,, is 
considered to be mainly caused by the bond distortions around the interface. 

5. Electronic structure 

Figures 3 and 4 show the electronic structures of the perfect crystal and the (1 22) X = 9 
boundary in Si. Figures 5 and 6 show those in P-SiC. All these were calculated for the 
144-atom cells, and those of the perfect crystals were calculated for supercells with the 
same size and the same periodicity as the supercells of the boundary. Results are shown 
along the lines in the plane with k ,  = 0 in the orthorhombic Brillouin zone. 

Here we should explain the electronic structures of the perfect crystals of Si and P- 
Sic  given in the present theoretical scheme. The reproduction of the conduction bands 
of Si in the diamond structure and of S i c  in the zincblende structure is poor, especially 
near the X and L points in the Brillouin zone, and the indirect band gap failed to be 
reproduced in Si and Sic ,  although the calculated values at the r point are relatively 
correct. 'Thus the band gaps and the conduction bands are not correct in figures 3 and 5 .  
This is a common drawback in the nearest-neighbour sp3 tight-binding model, and can 
be improved by inclusion of excited atomic states in the basis set or inclusion of distant- 
neighbour matrix elements [24]. 



Structure of a grain boundary in S i c  7819 

> 
' y o  
> 
(3 
(L w 

w 
- 4  

- a  

0 

Figure4. (a)Theenergybandstructureofthe{122}X = 9grainboundaryinSi. ( b )  Boundary- 
localised states. The states plotted are those for which the probability that an electron is 
locatedon the atoms of the 5-7 units at the interface exceeds50%. The dottedcurves indicate 
the bulk band structure of the perfect crystal. 
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Figure 5.  The energy band structure of the perfect 
0 1  2 3  0 crystal of P-sic. 

The valence band structure of Si is well reproduced using the present tight-binding 
parameters [21,24]. However, the reproduction of that of P-SiC is only qualitative. 
Especially the total valence band width is underestimated by 25% compared with 
experiments and other theoretical calculations [26]. In order to obtain more quantitative 
results, it is necessary to use parameters fitted for S ic ,  differently from the present 
universal ones, as pointed out in our preceding paper [23]. 

Figure 4 shows the calculated electronic structure of the {122} 2 = 9 boundary in 
Si. Boundary-localised states are also shown. There are no deep states inside the 
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Figure 6. (a )  The energy band structure of the {122} Z = 9 grain boundary in p-Sic .  ( b )  
Wrong-bond localised states. The states plotted are those for which the probability that an 
electron is located on the atoms constituting the wrong bonds at the interface exceeds 25%. 

fundamental gap in accordance with the smooth reconstruction of dangling bonds at the 
interface. However, boundary-localised states caused by structural disorder in the 
boundary core region are found at the band edges and within the bands. These features 
are similar to those found in the (2 1 l} C = 3 boundary and the (1 3 0} C = 5 boundary in 
Si in our previous calculations using the SETB method [15]. The states at -7.8 eV inside 
the pseudogap shown in figure 4 are most sharply localised, of which more than 90% of 
the contents are localised in the 5-7 units at the interface. These states are considered 
to be the same as those found in the calculation of the present boundary using the SETB 
method [ 111. In the calculation using the density-functional theory [ 121, localised shallow 
states associated with the conduction band edge have been found. However, in the 
present calculation, such states do not exist although the presentation of the electronic 
states near the conduction band edge is not necessarily correct in the present scheme, 
as mentioned above. 

Figure 6 shows the calculated electronic structure of the (1 22) Z = 9 boundary in p- 
Sic.  There are no deep states in the fundamental gap as well as the boundary in Si. 
However, it is remarkable that many new states occur especially at the band edges as 
compared with that of the perfect crystal in figure 5. As shown in figure 6(b) ,  most of 
these new states are associated with the wrong bonds at the interface. New bands at the 
top of the valence band and at the bottom of the conduction band are localised states at 
the Si-Si wrong bonds. Especially, the states below the bulk conduction band edge near 
the points 2 and 3 are sharply localised, of which more than 90% of the contents are 
localised at the Si-Si wrong bonds and neighbouring atoms in the 5-7 units at the 
interface. New bands at the bottom of the valence band and above the conduction band 
are localised states at the C-C wrong bonds. All these states are sharply localised, of 
which more than 90% of the contents are localised at the C-C wrong bonds and 
neighbouring atoms in the 5-7 units at the interface. Also localised states at the C-C 
wrong bonds exist near the pseudogaps within the valence band. States sharply localised 
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not to the wrong bonds but to the 5-7 units themselves also exist at the lower edge of the 
bulk conduction band edge along the line from point 2 to point 3 in figure 6(a) as 
compared with figure 5 .  

Of course, it should be noted that these results are qualitative and the eigenenergies 
are not necessarily correct, especially around the conduction band, as mentioned above. 
However, it is remarkable that the wrong bonds cause sharply localised states in the 
present boundary in S i c  as compared with the boundary in Si. Especially, the Si-Si 
wrong bonds induce localised states inside the gap. However, these states are shallow 
states and it can be concluded that the present boundary in S i c  is electrically non-active 
as well as reconstructed boundaries in Si. 

The mechanism of the occurrence of these wrong-bond localised states is analysed 
as follows. The electronic structure depends on the final self-consistent form of the 
Hamiltonian. The changes in the inter-atomic matrix elements Hwp(t l ,  t, + R )  caused by 
the large deviations of the bond lengths of the wrong bonds as compared with the bulk 
Si-C bonds are most important. At the C-C wrong bonds, the bond length is shortened 
by 15.1% as compared with the bulk Si-C bond length. This results in an increase of 
39% in the magnitude of the inter-atomic matrix elements. At the Si-Si wrong bonds, 
the bond length is lengthened by 19.6% and this results in a decrease of 30% in the 
magnitude of the inter-atomic elements. From the viewpoint of the bond orbital model 
[27], bonding and antibonding states, between which the splits are large because of the 
large magnitude of the matrix elements, are formed between the C atomic orbitals of 
low energy levels at the C-C wrong bonds. At the Si-Si wrong bonds, bonding and 
antibonding states, between which the splits are small because of the relatively small 
magnitude of the matrix elements, are formed between the Si atomic orbitals of high 
energy levels. It can be said that the former two types of states are the origin of the 
C-C bond localised states at the bottom of and within the valence band and those above 
the conduction band, respectively. It can also be said that the latter two types of states 
are the origins of the Si-Si bond localised states at the top of the valence band and those 
at the bottom of the conduction band, respectively. 

The changes in the on-site elements E,, at the wrong bonds themselves are relatively 
small. It is the fourth term in equation (3), the non-orthogonality correction, that most 
affects the on-site elements at the wrong bonds. Of course, the intra-atomic electrostatic 
potential, U,(Q, - Z,), and the inter-atomic electrostatic potential, P I ,  in equation (3), 
are much changed at the sites of the wrong bonds, as mentioned above. However, the 
changes in these two terms are opposite, counterbalanced to each other, and do not 
affect the on-site elements themselves so much. This explains the empirical success of 
electronic structure calculations of lattice defects in compounds in usual tight-binding 
theories using fixed on-site elements [28]. However, it should be noted that this is the 
case in calculation of eigenenergies. In calculation of total energies, the self-consistency 
including the intra-atomic and inter-atomic electrostatic interactions is important, as 
shown in the preceding section. 

In this way, it can be said that the present results of the electronic structure of the 
(1 22) X = 9 boundary in S i c  are rather general. On the other hand, it has been pointed 
out that wrong bonds in amorphous III-V or II-VI compound semiconductors frequently 
cause mid-gap states [28]. These states have characters of the bonding states between 
cations and the antibonding states between anions. The reason why the wrong bonds do 
not cause deep states in the present case is that the differences between the atomic levels 
of C and Si are not so large as compared with compound semiconductors. The present 
result is consistent with the calculations of antisite defects in cubic S i c  [29,30], where 
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no states in the fundamental gap were found, differently from the case of the 111-V 
compound semiconductors. 

6. Conclusions 

We have calculated the boundary energy, the stable atomic configuration and the 
electronic structure of the { 122) 2 = 9 boundary in P-Sic quantum-mechanically for the 
first time. We have constructed an atomic model of this boundary in P-SiC consisting of 
a zig-zag arrangement of 5-7 units similar to that in the same boundary in Si from a HREM 
image, although Si-Si and C-C wrong bonds are repeated alternately at the interface in 
this model. We have used the SCTB method. This method can treat both covalency and 
ionicity on an equal footing and can incorporate the effects of self-consistent charge 
redistribution and intra-atomic and inter-atomic electrostatic interactions. These effects 
have been shown to be essential in calculations of the boundary energy in Sic .  

We have also performed similar calculations of the same boundary in Si for 
comparison. The calculated results for Si have shown the stability and the electrical non- 
activity of the present boundary structure in Si similarly to the results obtained using the 
SETB method and the density-functional theory. From the analysis of the respective 
energy terms in the SCTB method, it seems that self-consistency is a negligible effect in 
Si, at least in structures where all the atoms are fourfold-coordinated. 

From the calculated boundary energy in Sic ,  we can conclude that the present 
reconstructed atomic model can exist stably as compared with the surface energies. The 
calculated boundary electronic structure in S i c  has no deep states in the fundamental 
gap and it can be said that the present boundary structure in S i c  is electrically non-active 
as well as the same boundary in Si, although the wrong bonds introduce the wrong-bond 
localised states at the band edges and within the valence band. 

Of course, it is necessary to examine other atomic models containing only one type 
of wrong bonds as mentioned in section 2, and further experimental observations are 
needed in order to decide on the structure really existing at the (1 22) 2 = 9 boundary in 
P-Sic. The remarkable features of the present structure obtained by the calculation as 
compared with other models are a small rigid-body translation along the (4 1 1) direction 
and the opposite deviations of Madelung potentials at respective atoms in the two grains 
on both sides of the interface because of the absence of glide-plane symmetry at the 
interface. 

In any case, the present results indicate that structural units such as five-membered 
rings and seven-membered rings can exist stably and cause no deep states in grain 
boundaries in S i c  as well as in Si. This means the possibility that electrically non-active 
and atomistically reconstructed boundaries can be constructed in general by arranging 
structural units, in S i c  as well as in covalent semiconductors. This is consistent with the 
observations of the coherent matching between adjoining grains in other types of 
boundaries in S i c  [ 1,4] .  

However, the effects of the wrong bonds in boundaries in S i c  are important. The 
increase in the electrostatic energy caused by the wrong bonds at the interface is a large 
part of the present boundary energy in Sic ,  differently from that in Si, and it has been 
found that the wrong bonds at the interface introduce the wrong-bond localised states 
at the band edges and within the valence band. It is possible that energies and electronic 
structures of boundaries in S i c  are much influenced by the numbers and kinds of wrong 
bonds at interfaces. Thus it might be possible that there exist boundary structures of 
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S i c  fairly different from those in covalent semiconductors in order to decrease the 
electrostatic energy associated with wrong bonds. It seem that the effects of impurities 
can be analysed with respect to the wrong bonds. For example, there may be the 
possibility that impurity atoms such as oxygen can easily intervene between Si atoms at 
the Si-Si wrong bonds in general boundaries in Sic .  
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